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Abstract
Removal of nuisance signals (such as motion) from the BOLD time series is

an important aspect of preprocessing to obtain meaningful resting-state functional

connectivity (rs-FC). The nuisance signals are commonly removed using denoising

procedures at the finest resolution, i.e. the voxel time series. Typically the voxel-wise

time series are then aggregated into predefined regions or parcels to obtain a rs-FC

matrix as the correlation between pairs of regional time series. Computational

efficiency can be improved by denoising the aggregated regional time series instead

of the voxel time series. However, a comprehensive comparison of the effects of

denoising on these two resolutions is missing.

In this study, we systematically investigate the effects of denoising at different

time series resolutions (voxel- and region-level) in 370 unrelated subjects from the
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HCP-YA dataset. Alongside the time series resolution, we considered additional

factors such as aggregation method (Mean and first eigenvariate [EV]) and

parcellation granularity (100, 400, and 1,000 regions). To assess the effect of those

choices on the utility of the resulting whole-brain rs-FC, we evaluated the individual

specificity (fingerprinting) and the capacity to predict age and three cognitive scores.

Our findings show generally equal or better performance for region-level

denoising with notable differences depending on the aggregation method. Using

mean aggregation yielded equal individual specificity and prediction performance for

voxel- and region-level denoising. When EV was employed for aggregation, the

individual specificity of voxel-level denoising was reduced compared to region-level

denoising. Increasing parcellation granularity generally improved individual

specificity. For the prediction of age and cognitive test scores, only fluid intelligence

indicated worse performance for voxel-level denoising in the case of aggregating

with the EV.

Based on these results, we recommend the adoption of region-level denoising

for brain-behavior investigations when using mean aggregation. This approach offers

equal individual specificity and prediction capacity with reduced computational

resources for the analysis of rs-FC patterns.
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Introduction
In recent years, resting-state functional connectivity (rs-FC) has received

increased interest as a representation of individual-level functional brain organization

that is predictive of behavior and potentially suitable as a biomarker (Dubois &

Adolphs, 2016; Finn & Rosenberg, 2021). The rs-FC refers to the statistical

relationships between spontaneous fluctuations in the blood oxygen level-dependent

(BOLD) signal of different brain regions, typically measured with functional magnetic

resonance imaging (fMRI), while a subject is at rest (B. Biswal et al., 1995; Friston,
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2011). For rs-FC to be suitable as an individual-level biomarker, it must be predictive

of inter-individual differences and be stable for repeated measurements of the same

individual (Finn & Rosenberg, 2021; Gordon et al., 2017; Mantwill et al., 2022).

Studies have found patterns in rs-FC to be individual-specific (Amico & Goñi, 2018;

Finn et al., 2015) and stable over extended periods (Gratton et al., 2018; Horien et

al., 2019). Additionally, rs-FC patterns have been linked to individual differences in

cognitive, behavioral, and clinical attributes (Finn & Constable, 2016; Geerligs et al.,

2015; Kong et al., 2019; Yamada et al., 2017).

However, capturing meaningful whole-brain rs-FC patterns at the individual

level is challenging, as the measured BOLD signal in each voxel is a mixture of

neuronal and non-neuronal nuisance signals (Bianciardi et al., 2009; B. B. Biswal et

al., 2010; Fox & Raichle, 2007; Logothetis, 2003; Power et al., 2015). Reducing the

influence of such nuisance signals is commonly done by removing their variance

from the BOLD time series using linear regression (Power et al., 2014). Such

removal methods are commonly applied to each voxel’s time series, i.e. the finest

resolution, which can be computationally expensive. As rs-FC is calculated using

aggregated regional time series, applying the removal process to the regional time

series, instead of the voxel time series, offers a potential reduction in computational

resources. However, the effect of this choice on the rs-FC and its utility in

individual-level analysis has not been explored. Therefore, moving nuisance removal

to the regional level requires additional considerations regarding the data quality and

the region definition and how it affects the individual-specificity and predictability of

behavior (Airan et al., 2016; Eickhoff et al., 2018; Finn & Rosenberg, 2021; Power et

al., 2015; Siegel et al., 2017).

Methods applied on the voxel-wise time series to increase the data quality

(i.e. denoising) frequently include removing slow signal drifts, filtering the frequency

bands to spectra associated with neuronal signals (< 0.1 Hz), and regressing

nuisance estimates (B. Biswal et al., 1995; Leopold et al., 2003; Power et al., 2015).

Several nuisance estimates can be derived from different origins; parameters from

spatial realignment due to subjects head motion are often expanded (Friston et al.,

1996; Satterthwaite et al., 2013), or signals from non-grey matter are used (Behzadi

et al., 2007). Unfortunately, head motion affects voxels nonuniformly across the brain

(Power et al., 2017). Therefore, even after using more powerful data-driven

estimation of noise components like independent component analyses (ICA; Ciric et
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al., 2017; Parkes et al., 2018; Salimi-Khorshidi et al., 2014) some motion-related

nuisance variance might remain (Bright et al., 2017; Kopal et al., 2020; Power et al.,

2015). Performing the removal process at the aggregated regional time series might

be advantageous for stabilizing not only the neuronal signal (Korhonen et al., 2017)

but also the motion-related nuisance signal. This stabilized nuisance signal might

better match the nuisance estimates, enabling more efficient and effective removal.

However, this potential rests on choices of functionally coherent regional

representation to enable stable and meaningful interpretability (Airan et al., 2016;

Eickhoff et al., 2018; Power et al., 2015).

In order to generate a functionally coherent regional time series the voxels

within a region should exhibit homogeneous functional activity (Stanley et al., 2013).

Conversely, functional heterogeneity can arise when multiple non-related functional

units are captured by the same region definition (Friston et al., 2006; Korhonen et al.,

2017). Heterogeneity can arise due to a subject’s misalignment to the parcellation or

coarse granularities, i.e. large regions (Craddock et al., 2012). This makes the

selection of an aggregation method critical as its behavior in homogeneous and

heterogeneous regions will impact the quality of the rs-FC and in turn the individual

differences captured by rs-FC. A common approach to aggregate voxel-wise time

series into homogeneous regional time series is averaging all voxels’ time series in a

region, thereby capturing shared aspects by effectively smoothing the time series

and reducing complexity (Korhonen et al., 2017). While straightforward to apply and

interpret, it bears the risk of suppressing or canceling relevant variance if the region

spans multiple functionally distinct units (Friston et al., 2006). An alternative

approach is computing the first eigenvariate (EV; (Friston et al., 2006). It results from

performing eigendecomposition on the voxel time series, resulting in a weighted

mean reflecting the main variance component of the regional response (Saxe et al.,

2006). In a functionally homogeneous region, the mean and EV time series are

similar (Airan et al., 2016; Saxe et al., 2006). Conversely, in a functionally

heterogeneous region, the EV will select only the most dominant part of the regional

variance (Saxe et al., 2006). The EV's sensitivity can lead to regional time series

dominated by a subset of the voxels within the region that might differ from subject to

subject (Craddock et al., 2012; Saxe et al., 2006). In the context of individual

differences, the EV’s sensitivity might be desirable to account for small

subject-specific misalignments to region definitions which are often derived from a
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group-level atlas. Whether this characteristic is advantageous in the context of the

analysis of individual differences is still unclear.

In this regard, the granularity of the parcellation scheme has a considerable

impact as the differing sizes of regions affect the functional homogeneity of the

regions (Craddock et al., 2012; Shen et al., 2013). With larger regions more

smoothing is applied which might lead to loss of individual differences (Airan et al.,

2016; Finn et al., 2015; Korhonen et al., 2017). On the other hand, a highly granular

parcellation might be too close to voxel-level resolution, overemphasizing the impact

of residual motion per region, promoting spurious relationships (Power et al., 2015;

Stanley et al., 2013) and increasing computational complexity. However, there is no

single correct number of regions, as different granularities reflect distinct

organizational layers of the brain (Eickhoff et al., 2018), which might impact the

stability and predictiveness of individual differences nonuniformly.

To our knowledge, no previous work has investigated the effects of

region-wise denoising for individual differences analyses. While for mean aggregated

regional time series, both voxel-wise and region-wise denoising should result in the

same rs-FC patterns at any granularity (Friston et al., 2006), the behavior of EV

aggregation remains unexplored. To fill this gap, we systematically evaluated the

effects of denoising the voxel-level and region-level time series. We assessed the

individual specificity and predictability of individual differences in resulting rs-FC

(Finn & Rosenberg, 2021). Specifically, we evaluated individual specificity as the

ability to identify the same subject from different scans with the binary approach of

connectome fingerprinting (Finn et al., 2015) and the continuous approach of

differential identifiability (Amico & Goñi, 2018). The behavioral predictability was

addressed by predictive analysis of age and cognitive test scores acquired outside

the scanner. We included considerations to test how known influences such as the

quality of the data and parcellation granularity influence region-level denoising. To

this end, we evaluated the same dataset at two levels of preprocessing affecting

data quality and assessed the association of obtained rs-FC with motion, and

computed rs-FC with different granularities of the same parcellation scheme. Our

comprehensive analyses can inform the design of fMRI processing pipelines and

help save computational resources.

5

https://www.zotero.org/google-docs/?WoTZKU
https://www.zotero.org/google-docs/?iUIAZ8
https://www.zotero.org/google-docs/?iUIAZ8
https://www.zotero.org/google-docs/?cWCPWK
https://www.zotero.org/google-docs/?cWCPWK
https://www.zotero.org/google-docs/?GbKfuF
https://www.zotero.org/google-docs/?V3zz56
https://www.zotero.org/google-docs/?jiJsZP
https://www.zotero.org/google-docs/?qNnbfK
https://www.zotero.org/google-docs/?dA7P0b


Methods
Dataset

The data used for this study was obtained from the Human Connectome

Project’s Young Adult (HCP-YA) S1200 subject release (Van Essen et al., 2013). The

HCP-YA dataset includes two resting-state sessions (R1 and R2) carried out on

consecutive days with 30 minutes of resting-state acquisition per day. Each session

involved 2 ✕ 15-minute runs with opposite phase encoding directions (left-right [LR]

and right-left [RL]). All subjects’ resting-state scans were acquired with a 3T Siemens

scanner using the same protocol: slice-accelerated multiband pulse sequence (factor

of 8), a spatial resolution of 2 mm isotropic voxels, TR of 720 ms, TE of 33 ms, with a

total of 72 slices, a field of view of 208 mm in the anterior-posterior direction, 180

mm in the phase encoding direction (LR and RL), and 144 mm in the

inferior-superior direction (for in-depth details on the acquisition protocol, see

Glasser et al., 2013; Uğurbil et al., 2013; Van Essen et al., 2013). The HCP-YA

scanning protocol was approved by the local Institutional Review Board at

Washington University in St. Louis, and all participants provided written consent

before participation. Approval for retrospective analysis was given by the ethics

committee at the Faculty of Medicine at Heinrich-Heine University Düsseldorf (Study

No. 2018-317-RetroDeuA). For our investigation, 370 (178 female) non-related

individuals were selected (by Family_ID) for whom cognitive scores and rs-fMRI

scans from both resting-state sessions (R1 and R2), acquired with both

phase-encoding directions (LR and RL) were available (Table 1).

Table 1. Basic summary statistics for demographics and cognitive variables.

Original variable names specified by the HCP are provided in parentheses.

Variable Statistic

Sex, % (N) Male: 52% (192)
Female: 48% (178)

Age, M (SD) 28.8 (3.8)

Working memory (ListSort_Unadj), M (SD) 111.8 (11.8)

Fluid intelligence (PMAT24_A_CR), M(SD) 16.9 (4.8)
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Reading (ReadEng_Unadj), M (SD) 117.1 (10.8)

Motion (mean FD), M (SD) 0.16 (0.05)

HCP preprocessing
The HCP-YA resting-state data is accessible (www.dbconnectome.com) at

different points throughout the HCP processing pipelines. The preprocessing of the

HCP-YA dataset has been described extensively elsewhere (Glasser et al., 2013;

Smith et al., 2013). In short, the minimal preprocessing pipeline applied by the HCP

included the correction of spatial distortion, realignment to correct for head motion to

a single-band reference image, distortion field correction, and registration to 2 mm

Montreal Neurological Institute (MNI) standard space (MNI152NLIN6Asym). The

necessary estimates per step were separately calculated, concatenated, and applied

to the fMRI volumes in one spline interpolation to minimize interpolation-induced

blurring. The resulting time series were additionally intensity normalized (to a global

mean of 10,000) and brain masked (described in detail by Glasser et al., 2013).

The ICA-FIX (FMRIB’s ICA-based X-noiseifier; Salimi-Khorshidi et al., 2014)

denoising pipeline used the minimally preprocessed data as input and removed

non-neuronal components from each voxel’s time series. This pipeline included

temporal high-pass filtering (cutoff at 2,000 s full-width-half-minimum), FIX

classification of 250 independent components (from ICA) into “good” and “bad”

components, and regression of “bad” components and 24 regressors derived from

motion estimation (Smith et al., 2013).

For our analyses, we used the minimally preprocessed data and the data from

the ICA-FIX-based denoising pipeline (Smith et al., 2013). This enabled us to do an

assessment of the influence of the amount of denoising performed. The two data

quality configurations will be respectively referenced as Minimal and ICA-FIX from

here on forward.

Rs-FC processing
Our rs-FC processing pipelines (Figure 1) considered two main aspects:

denoising and parcellation. After downloading a given subject’s volume, voxel-wise

time series were extracted with a binarized brain mask generated from the

parcellation template using the nilearn toolbox (Abraham et al., 2014). Next, either
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denoising or parcellation was performed. As a last step in each pipeline, rs-FC was

generated by calculating the Pearson’s correlation coefficient between all pairs of

z-scored regional time series (Pernet et al., 2013) resulting in a NRegion ✕ NRegion

correlation matrix. Each subject’s rs-FC was computed for each phase-encoding run

separately.

8

https://www.zotero.org/google-docs/?h6CI2i


Figure 1. The schematics illustrate the processing pipelines for voxel-wise and

region-wise denoising. Following the download, each phase encoding run is

processed independently. Voxel-wise time series extraction precedes either

denoising or parcellation. The regressors include WM, CSF, GS, their temporal

derivatives, and square terms. *24 motion regressors were included for the

minimally preprocessed data configuration only.

Voxel-wise and region-wise denoising
To evaluate differences between denoising the BOLD time series voxel-wise

and region-wise we set up pipelines that differed in two main aspects. Switching the

sequence in which these two sections were applied led to the generation of either

rs-FC denoised at the voxel level or at the region level. The voxel-wise pipeline (Fig.

1, left) denoised all the extracted voxel time series, and aggregated the denoised

voxel time series into regional time series. The region-wise pipeline (Fig. 1, right)

aggregated the voxel-wise extracted time series into regional time series first,

reducing dimensionality, and applied denoising to the regional time series. In either

case, rs-FC was calculated using regional time series that had either been denoised

voxel-wise or region-wise.

Denoising parameters

Denoising included the removal of linear trends to correct gradual signal drifts

over time, Butterworth bandpass filtering in the frequencies between 0.009 and 0.08

Hz (Kopal et al., 2020; J. Li et al., 2019; Siegel et al., 2017), and linear nuisance

regression. All of these steps were performed using nilearn’s “signal.clean” function.

A total of 12 nuisance regressors provided by HCP were used consisting of mean

signals generated from white matter (WM) and cerebral spinal fluid (CSF) masks as

well as the mean global signal (Fox et al., 2009), their temporal derivatives, and their

squared terms (Satterthwaite et al., 2013). While effective at reducing noise,

removing GS is heavily debated as it may also remove signals of interest, potentially

distorting individual differences (Demertzi et al., 2022; Fox et al., 2009; J. Li et al.,

2019; Macey et al., 2004). However, we decided to include it since removing GS can

improve the predictability of behavior from rs-FC (J. Li et al., 2019; Yan et al., 2013).

Additional 24 motion regressors (3 rotations, 3 translations, their 6 temporal
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derivatives, and 12 squared terms) were included for denoising of the Minimal data

configuration as HCP’s ICA-FIX-based denoising pipeline already removed 24

additional motion regressors (Smith et al., 2013). To prevent the reintroduction of

artifacts due to the modularity of our setup nilearn orthogonalizes regressors to the

bandpass filter before removal (Lindquist et al., 2019).

Generation of regional time series
Aggregation Metrics

Two aggregation metrics were employed to evaluate the ability to capture

regional time series capturing individual differences at different levels of processing.

The aggregation into regional time series was either performed on the denoised or

the voxel time series. To generate regional time series, all voxel-wise time series

from a region were aggregated into one regional time series by computing the Mean

(Stanley et al., 2013) or the EV (Friston et al., 2006). To generate the EV the

voxel-wise time series were decomposed using single-value decomposition and the

resulting first eigenvector is sign adjusted and scaled by the square root of the

variance it explains.

Whole brain parcellation

Previous studies suggest that parcellation granularity (i.e., region size)

contributes to the ability to identify individual differences (Airan et al., 2016; Finn et

al., 2015). Therefore, we generated rs-FC using three different granularities (100,

400, and 1,000 regions) of the Schaefer parcellation scheme. The granularities

represent the coarsest and finest granularities provided as well as a commonly used

intermediary described by Schaefer et al. (2018) to capture fully differentiated

regions.

The Schaefer parcellation templates were used

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellati

on/Schaefer2018_LocalGlobal) in the Yeo 7-network version in MNI152

(MNI152NLIN6Asym) space (Grabner et al., 2006) to match the data provided by the

HCP-YA. This parcellation scheme is based on the resting-state and task-fMRI data

of 1,489 subjects. Scans between subjects were aligned with surface-based

registration, and cortical regions ranging from 100 to 1000 (in steps of 100) were

identified with a gradient-weighted Markov Random Field model. The parcellation
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generated by this approach has been found to produce parcels containing

functionally homogeneous voxel time series and with neurobiologically meaningful

boundaries, i.e., they agree well with histologically defined boundaries. The

parcellation template was used to mask the voxel-wise extracted time series,

assigning labels to each voxel time series. Subsequently, voxel time series with the

same label according to the parcellation scheme were aggregated into a regional

time series. Subcortical regions were not included in the analysis.

Stability of individual specificity of rs-FC: Identification Accuracy & Differential
Identifiability

We assessed the stability of rs-FC in two ways: identification accuracy (Iacc;
(Finn et al., 2015) and differential identifiability (Idiff; (Amico & Goñi, 2018). First, the

rs-FC matrices from the different phase-encoding runs were averaged to arrive at

one scan per session resulting in two rs-FC per subject (R1 and R2). Next, we

created a Nsubject ✕ Nsubject identifiability matrix by calculating Spearman correlations

between the rs-FC of the two sessions (R1 and R2). In this identifiability matrix, the

within-subject correlations are represented by the diagonal values, and the

between-subject correlations are represented by off-diagonal values. Identification

accuracy was then calculated as the proportion of subjects for whom the highest

correlation value was positioned on the diagonal. Differential identifiability was

calculated by subtracting the average between-subject correlations from the average

within-subject correlations.

Prediction of age and cognitive scores
To test the effects of denoising the time series voxel- or region-wise on

brain-behavior predictions, we used the rs-FC obtained from the different

preprocessing pipelines to predict age as well as three cognitive measures

previously demonstrated to result in reasonable prediction accuracy in the HCP-YA

dataset (He et al., 2020; Sasse et al., 2023): working memory (ListSort_Unadj), fluid

intelligence (PMAT24_A_CR), and reading (ReadEng_Unadj). First, each subject’s

four rs-FC matrices were averaged across phase encoding directions (LR and RL)

and sessions (R1 and R2) to generate one rs-FC per subject. The unique edges

from this rs-FC matrix (i.e., the lower triangle) were then used as features. A kernel

ridge regression model with Pearson kernel was used within a nested 5-fold
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cross-validation (CV) scheme with 5 repetitions where the inner 5-fold CV was used

to select the l2-regularization parameter. To control for possible confounding

influences, we removed variance associated with age, sex, and motion (i.e.,

framewise displacement [FD]; He et al., 2020) from the cognitive scores in a

CV-consistent manner, i.e. confound regression models were trained on the training

data and applied to both training and test data to prevent data leakage (More et al.,

2023; Snoek et al., 2019). The prediction accuracy was assessed as Pearson’s

correlation between the predicted value and the observed value of the target. The

prediction pipeline was implemented in Python (Version 3.10.0) using the Julearn

package (Version 0.2.6.dev3; Hamdan et al., 2023). Julearn is an extension built on

top of scikit-learn (Version 1.1.3; (Pedregosa et al., 2011).

Motion association assessment for rs-FC
To understand how the main results might be impacted by residual head

motion influences, we also computed rs-FC typicality (TFC; Kopal et al., 2020). TFC

evaluates the typicality of an individual rs-FC compared with a group-averaged

rs-FC. A higher typicality is associated with lower motion estimates (i.e. mean FD).

We used this measure to assess the motion association of rs-FC resulting from our

different pipelines. TFC was computed following rs-FC generation for each run

separately. TFC values were generated by computing Pearson’s correlation of rs-FC

to the group rs-FC of the same run. The group rs-FC was generated by averaging all

rs-FC from the same run. The association between TFC and FD was assessed by

computing the Spearman correlation.

Preprocessing time assessment
The computation time of each pipeline execution was tracked to compare the

runtime. Once the data download was complete, the timer was started before

voxel-wise time series extraction and stopped after the generation of rs-FC. To

ensure the stability of the measurements per subject, we made sure that all pipelines

for a single subject were executed on the same compute node on a high-throughput

computing cluster. Although different subjects might have been processed with

slightly variable processing power, the speed is stable across all pipeline executions

for each subject.
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Data and Code availability
Further details regarding the obtaining of the HCP-YA dataset can be found at:

https://www.humanconnectome.org/

The preprocessing, analysis, and visualization scripts used in this project are

available in the project repository: https://github.com/juaml/voxel-vs-region-denoising

The preprocessing pipeline utilized the open-source toolbox Junifer, which is

accessible at: https://github.com/juaml/junifer

Machine learning-based prediction analyses were conducted using the toolbox

Julearn, available at: https://github.com/juaml/julearn

Results
Individual-specificity of rs-FC denoised at the voxel- or region-level

Consistent with previous literature using whole-brain rs-FC (Finn et al., 2015;

Sasse et al., 2023), Iacc for voxel-wise denoising ranged from 0.768 to 0.997, while

region-wise denoising ranged from 0.945 to 0.997 (Table 2). Region-wise denoising

was equal or better in identification performance than voxel-wise denoising in all the

cases. For Idiff, the performance for both voxel-wise denoising and region-wise

denoising ranged from 19.58 to 34.768 (Table 2). For this metric, the region-wise

denoising also obtained better or equal results in all cases except the EV

aggregation with a parcellation granularity of 100 regions.

The parcellation granularity was an important factor for the identification

performance. In all cases, Iacc increased with increasing parcellation granularity. Iacc
values were less influenced by parcellation granularity for Mean aggregation, ranging

from 0.954 to 0.997 for both data quality configurations (Table 2). However, for EV

aggregation, the parcellation granularity had a more pronounced impact in

voxel-wise denoising for both data quality configurations (Minimal: 0.802-0.982;

ICA-FIX: 0.768-0.991). For the parcellation granularity of 400 regions, all

identification accuracies were above .94, increasing to 0.982 for 1000 regions. The

parcellation granularity effect was also prominent in Idiff (Table 2). The performance

obtained with the ICA-FIX data configuration was better compared with the one

obtained from the Minimal data configuration, except for the EV aggregation in
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voxel-wise denoising, where the obtained performance was similar for both data

quality configurations.

As expected, the denoising level did not influence Iacc or Idiff for Mean

aggregation, since the same performance was achieved between the two denoising

levels in each parcellation granularity and each data configuration. The performance

of the two aggregation methods (Mean and EV) was found to be almost equal when

denoising at the regional level when the same data configuration and parcellation

granularity were used.

Table 2. Overview of Identification performance across all conditions.

Row Data
configuration

Parcellation
granularity

Iacc
(Voxel)

Iacc
(Region)

Idiff
(Voxel)

Idiff
(Region)

Aggregation: EV

1 Minimal 100 0.802 0.951 22.37 19.67

2 Minimal 400 0.959 0.986 27.954 28.041

3 Minimal 1,000 0.982 0.993 31.572 32.552

4 ICA-FIX 100 0.768 0.945 22.286 21.329

5 ICA-FIX 400 0.970 0.987 27.620 30.049

6 ICA-FIX 1,000 0.991 0.997 31.722 34.709

Aggregation: Mean

7 Minimal 100 0.954 0.954 19.587 19.587

8 Minimal 400 0.987 0.987 27.963 27.963

9 Minimal 1,000 0.993 0.993 32.530 32.530

10 ICA-FIX 100 0.95 0.95 21.301 21.301

11 ICA-FIX 400 0.987 0.987 30.044 30.044

12 ICA-FIX 1,000 0.997 0.997 34.768 34.768

Predictiveness of rs-FC denoised at the voxel- or region-level
In the prediction analysis, age showed the strongest average correlation

(0.286) between predicted and actual scores across all conditions (Figure 2). Among
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the cognitive scores, fluid intelligence had the strongest correlation (0.199), while

Working Memory and Reading obtained 0.127 and 0.119, respectively.

Between the two aggregation metrics, small differences in average correlation

between predicted and actual scores were also observable for the targets fluid

intelligence (Mean: 0.215 / EV: 0.183) and Reading (Mean: 0.128 / EV: 0.111). As

expected, there were no differences between voxel- and region-level denoising for

Mean aggregation (Figure 2). Regarding the EV aggregation method, there was no

clear difference between voxel-level and region-level denoising for predicting age

and working memory (Figure 2). However, region-level denoising showed a slight

advantage for predicting fluid intelligence and reading ability (Figure 2).

Similar to the identification analyses, prediction performance increased with

increasing parcellation granularity but only for the target fluid intelligence (Figure S3).

This trend was most noticeable with EV aggregation, where voxel-level denoising

showed increasing performance with increasing parcellation granularity. Region-level

denoising increased only from 100 to 400 regions which was also seen in Mean

aggregation performance.
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Figure 2. Predictability based on rs-FC denoised voxel-wise or region-wise in both

data quality configurations. Pearson's r between the predicted and observed

values of each target, generated over 5-fold x 5-repeats in each of the three

parcellation granularities are shown. Rs-FC was averaged across both runs (LR

and RL) and both sessions (R1 and R2) per subject. Mean aggregation (blue)

yielded identical predictions between the two denoising levels for all targets, as

illustrated by their position on the diagonal. EV aggregation (orange) yielded

slightly higher predictions for region-wise denoising for fluid intelligence and

reading.

Assessment of motion in rs-FC denoised at the voxel- or region-level
As motion influences can still be present in preprocessed rs-FC (Siegel et al.,

2017; Waller et al., 2017), we analyzed the relationship between typicality of the

rs-FC and mean FD for each run. To this end, we sought to determine the

association (Spearman correlation) between TFC and mean FD values (Figure 3). In

this context, the difference between the data quality configurations was of particular

interest, as they include different degrees of motion correction.

As expected, for Mean aggregation, the same association values were

obtained for both voxel- and region-level denoising ranging between -0.112 to -0.206

(ICA-FIX) and -0.133 to -0.262 (Minimal). For the EV aggregation, rs-FC was also

more strongly associated with motion in the Minimal data configuration (-0.135 to

-0.342), compared to the association obtained in the ICA-FIX data configuration

(0.001 to -0.208). Importantly, in all the cases, the motion correlation was lower when

using the ICA-FIX data configuration (0.001 to -0.206) compared to the Minimal data

configuration (-0.133 to -0.342). Interestingly, this difference in data quality

configurations was largest in the voxel-level denoised rs-FC using EV aggregation.
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Figure 3. The association between TFC and mean FD values for all four phase

encoding runs in both the Minimal data configuration (A) and ICA-FIX

dataconfiguration (B) is presented across parcellation granularities. Each bar

represents the average of all data points. (A) The association was found to be

stable for both Mean aggregation and EV aggregation denoised at the region level.

However, the association with motion was increased in the EV aggregated rs-FC

denoised at the voxel level. (B) The values in the ICA-FIX dataset for Mean

aggregation and EV aggregation denoised at the region level were stable and

exhibited a slight decrease in comparison to those of the Minimal data

configuration. The EV aggregated rs-FC denoised at the voxel level demonstrated

the lowest overall association with motion.

Comparison of pipeline runtimes
The comparison of time required to preprocess and calculate the rs-FC

matrices showed that using voxel-level denoising led to a 1.3-fold increase
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compared to region-level denoising, irrespective of the aggregation method or

parcellation granularity (Figure 4). When comparing the two aggregation methods,

using EV aggregation generally led to a 1.7-fold increase in computation time

compared to Mean aggregation. An influence of parcellation granularity was

observed exclusively in the context of EV aggregation. In this case, the usage of 100

regions demanded 1.7 times the computing time required by 1000 regions.

Conversely, 1000 regions exhibited a computing time that was nearly comparable to

that required for Mean aggregation.

Figure 4. Pipeline runtime per subject (n=370) shows a decreasing trend with finer

granularities in EV aggregation. The region-wise denoising pipeline was faster
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than the respective voxel-wise pipeline in all cases.

Discussion
Here, our main goal was to systematically compare denoising on the

aggregated region-level versus voxel-level BOLD time series in resting-state

processing pipelines for individual-level rs-FC. To take into account other factors

influencing rs-FC, we additionally considered two aggregation strategies to obtain

regional time series (Mean and EV), three levels of cortical parcellation granularity

(100, 400, and 1,000 regions), and two data quality configurations (Minimal and

ICA-FIX). Individual differences in the resulting rs-FC were examined using data

from 370 unrelated subjects from the HCP-YA dataset. To assess the utility of the

ensuing rs-FC, we evaluated two aspects of individual-level rs-FC; (1) individual

specificity quantifying the stability of rs-FC across scans, and (2) the predictability of

age, fluid intelligence, working memory, and reading ability. Additionally, we

assessed the rs-FCs association with motion as well as computational resources

required per pipeline execution. Our results indicated equal or higher performance

for region-level denoising with more stable performance and reduced runtime in the

Mean aggregation strategy. The general performance, especially in individual

specificity increased with increasing parcellation granularity. Not surprisingly, rs-FC

from the Mean aggregation yields equivalent results for both denoising levels across

analyses of individual differences. For rs-FC from EV aggregation, the results

between the two denoising levels were dissimilar. This dissimilarity was modulated

by the parcellation granularity.

Individual specificity of rs-FC denoised at voxel- or regional level
The useability of whole-brain rs-FC depends on capturing stable individual

aspects of brain connectivity which allow reliable identification of the individual

across multiple scans (Finn & Rosenberg, 2021). Overall the two individual

specificity metrics, identification accuracy and differential identifiability, were within

the ranges of previous reports (Amico & Goñi, 2018; Finn et al., 2015; Sasse et al.,

2023). In particularly, the high identification accuracy scores (0.95-0.99; see Table 2)

are to be expected given the high data quality and long scan duration of the HCP-YA
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dataset (Airan et al., 2016; Horien et al., 2018). As expected, the performance of

Mean aggregation for voxel- and region-level denoising was equal in all cases. As

pointed out by Friston et al. (2006), from the mathematical point of view, this is

expected, as long as all steps performed are linear transformations of the data.

The individual specificity improved with finer parcellation granularity. This is in

line with previous suggestions that a finer parcellation granularity benefits the

identification of individuals in rs-FC (Airan et al., 2016; Finn et al., 2015). Especially,

the finer parcellations (400 and 1000 regions) led to almost similar individual

specificity across denoising levels and aggregation strategies. As finer granularities

contain smaller regions, they are more likely to enclose functionally homogeneous

voxels. In cases like this, the behavior of Mean and EV aggregation has been

suggested to be similar (Craddock et al., 2012; Saxe et al., 2006).

However, the coarser parcellation (100 regions) showed a noteworthy

difference between voxel- and region-level denoising for EV aggregation. This

difference was characterized by reduced Iacc and increased Idiff in voxel-level

denoised rs-FC. Although most reports on individual specificity focus on Mean

aggregated rs-FC, Airan et al.’s (2016) comparison of Mean and EV aggregation

reported no noteworthy differences between the two aggregation strategies across a

similar range of parcellation granularities. Their investigation focused on the amount

of data (acquisition minutes) needed to maximize individual specificity in a sample of

23 subjects. To this end, they compared the two aggregation strategies in a

1,000-region Craddock parcellation (Craddock et al., 2012). Their finding of similarity

between Mean and EV is consistent with our findings of individual differences at the

finest parcellation granularity (1,000 regions). In addition, we have shown that the

difference between the two aggregation strategies is greater at coarse parcellation

granularity and when using a larger sample size with a similar amount of data per

subject. In particular, the sample size has been suggested to affect measures of

individual specificity, as a larger number of subjects also increase the likelihood of

observing similar rs-FC between subjects (Li et al., 2021; Waller et al., 2017).

Borrowing from the previous arguments of Craddock et al. (2012) and Saxe et

al. (2006), the EV will select a subset of voxel times series per region in

heterogeneous regions, which may lead to the selection of different voxels across

multiple scans. This session specificity could lead to an increased likelihood that

single individuals get misidentified in a binary test-retest metric such as Iacc, where a
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single mismatch is enough to influence the overall score. The differential

identifiability’s ability to quantify the individual specificity on a continuous scale

across the whole dataset could still be rather high in this scenario, as long as the

mismatch is caused by only one or a few other subjects being more similar.

The suggested behavior of the EV only led to individual differences in

voxel-level denoising. Aggregating the voxel time series first and then denoising the

region-level time series led to individual specificity performance similar to Mean

aggregation. Since denoising involves detrending, effectively demeaning the time

series, the EV is influenced to select slightly different variance components

depending on the denoising level. In the case of region-level denoising, aggregating

the voxel time series might lead to the EV decomposition selecting the regional

mean signal, since this component explains the largest amount of variance.

Predictability from rs-FC denoised at voxel- or regional level
Another aspect of rs-FC for effective use in clinical applications is its utility in

predicting individual-level demographics and phenotypes (Finn & Rosenberg, 2021).

In our study, the prediction accuracies (Pearson’s r) between 0.286 and 0.119

(Figure 2) were in line with previously reported ranges for whole-brain rs-FC-based

predictions (He et al., 2020; Sasse et al., 2023). The similarity observed in individual

specificity between voxel- and region-level denoising when using Mean aggregation

was also observed for the prediction accuracies across all targets. Thus, the

predictive utility of rs-FC did not change irrespective of voxel- or region-level

denoising. Nevertheless, voxel-level denoising is widely used in brain and

behavioural studies as the common toolboxes SPM, FSL, CONN use it as their

default. However, due to the mathematical equality, there seems to be no obvious

reason to choose one or the other in terms of prediction performance.

The differences observed in the EV aggregation were present only in the

targets fluid intelligence and reading ability. The rs-FC that is optimal for individual

specificity is not necessarily optimal for prediction accuracy because different

aspects of the signal might contribute to these different goals (Finn & Constable,

2016; Noble et al., 2019). Similar or slightly lower prediction accuracies were

obtained for EV-aggregated rs-FC denoised at the voxel-level. This suggests that

EV-aggregated rs-FC does not offer an advantage in prediction analysis. Thus, the

potentially interesting ability to capture session-specific details by EV aggregation did
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not uncover patterns that would lead to better predictions of the behavioral targets or

age.

Of the four targets, only fluid intelligence was affected by the parcellation

granularity. Previous studies have demonstrated that the frontal-parietal network is a

driving factor for individual specificity as well as fluid intelligence (Amico & Goñi,

2018; Finn et al., 2015). Our results suggest that this alignment between individual

specificity and predictability is only meaningful for the prediction of fluid intelligence

scores while other targets might rest on different aspects of the rs-FC. In this target,

the lowest parcellation granularity (100 regions) performed worst across the

denoising levels and aggregation strategies. The slight improvements with finer

granularities suggest that the relevant signal might not be adequately captured at

coarse granularities. Interestingly, increasing to finer parcellation did not lead to

improved performance at 400 and 1,000 regions. Here, it is possible that in large

feature spaces, like the 1,000-region parcellation, the signal might become diluted,

i.e., many features might not be associated with the target, and consideration of the

curse-of-dimensionality (Hastie et al., 2009) can harm predictive performance

(Schulz et al., 2024).

Additional considerations
Motion association

Previous studies suggest that residual motion may influence the individual

specificity and predictability of rs-FC (Siegel et al., 2017; Waller et al., 2017).

However, others suggest that this influence is likely to be minimized with a sufficient

amount of data per subject (Airan et al., 2016; Horien et al., 2018). Our main findings

support this view, as we observed stable individual specificity and predictive

performance regardless of the degree of preprocessing (Minimal or ICA-FIX) applied

to the raw data by the HCP (Glasser et al., 2013; Smith et al., 2013). In addition to

our main findings, we examined the quality of each of the rs-FC runs and its relation

to motion by associating the typicality of the rs-FC of each run with the respective

average FD (Kopal et al., 2020). Some stable and low degree of association

remained in all Mean aggregation rs-FCs and the EV aggregated rs-FC using

region-level denoising. These associations have also been reported previously

(Kopal et al., 2020). Interestingly, the voxel-level denoising in EV aggregated rs-FC

displayed differing patterns between the two data quality configurations. In the
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Minimal data configuration, the association to motion was the highest, while the

associations in the ICA-FIX data configuration were close to zero. This effect was

stable across the parcellation granularities (see Figure 3). We take this result as an

indicator that, indeed, the quality of the ICA-FIX data configuration is less

motion-associated. However, this effect does not translate into the performance in

our prediction analysis.

Pipeline Runtime
In general, the denoising of the regional time series requires less

computational time, as shown by the runtime of the different pipelines. The most

noticeable difference in runtime was between the aggregation strategies. The Mean

aggregation strategy had a constant runtime across all levels of parcellation

granularity. In contrast, the EV aggregation took more time when coarser parcellation

granularities (i.e. more voxels per region) were involved. This difference is likely due

to the Mean strategy being easier to perform, making it efficient regardless of the

number of voxels in a region. In contrast, singular value decomposition determines

all eigenvectors, of which the first is projected back into the time series domain,

which is much more time-consuming. This is especially true when a larger number of

voxels are involved in the calculation, as the time complexity of standard EV

implementations increases with the number of voxels.

Limitations and considerations for future work
It should be noted that while we discuss the differences between voxel-wise

and region-wise denoising, the ICA-FIX pipeline by the HCP was applied to the voxel

time series. Hence, our results only account for the additional denoising steps of

detrending, bandpass filtering, and linear nuisance regression. Future studies are

needed to demonstrate that the obtained results are generalizable to other datasets

with differing data quality and scan durations, which are known to influence individual

difference analyses (Airan et al., 2016; Horien et al., 2018). Since Mean aggregation

should be the same for voxel- and region-level denoising based on firm

mathematical reasons and supported by our empirical demonstration, it should lead

to similar outcomes in other datasets. However, the performance of the EV might

vary depending on multiple factors such as motion content and choice of region size.

The influence of these factors were already observable in the current dataset. Note
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that while ICA-FIX leads to clean data and is a HCP-specific configuration, the

results from the minimally processed data configuration might be considered more

similar to standard quality clinical datasets. Here we employed parcellation schemes

with three levels of parcellation granularity and found that the largest improvement in

identification performance happened between 100 and 400 regions. It might be of

interest for future investigations to probe the space between these two granularities.

Lastly, as a group-level parcellation was used, it is possible that voxel-to-region

assignment across subjects was suboptimal which might have influenced the EV

aggregation more than the Mean aggregation. Individual-specific region definition

approaches might provide better region specification (Kong et al., 2021).

Furthermore, additional steps can be performed in rs-FC processing (e.g., scrubbing)

that we did not consider. Future work might consider those aspects more closely.

Conclusion
Based on our findings, we encourage the potential of denoising time series at

the regional level for the analysis of individual differences. Particularly for Mean

aggregation, as it provides equivalent results and is computationally more efficient.

This offers substantial benefits in computational runtime without compromising the

individual specificity and predictability of Mean aggregated rs-FC. While EV

aggregation might be an interesting alternative, the sensitivity to residual motion

should be closely monitored and evaluated, especially with voxel-wise denoising.

Lastly, the choice of parcellation granularity (i.e., region size) should be carefully

considered specifically for EV aggregation, as individual differences may suffer in

coarser parcellations. With this work, we hope to provide evidence to guide

researchers in choosing the most appropriate and efficient steps for investigating

brain-behavior associations in future investigations.
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Supplementary Material

Figure S1. Comparing identification performance of rs-FC denoised at the voxel- versus

region-level across Mean or EV aggregation (shape) and three parcellation granularities in

both data quality configurations (color). (a) Identification accuracy increases with finer

granularities. Differences between the denoising levels are observed only in the case of

EV aggregation. (b): Differential Identifiability also increases with finer parcellation.
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Deviations from the diagonal only occur in EV aggregation in favor of voxel-level denoising

at 100 regions and equal or better for region-level denoising at 400 and 1,000 regions.

Figure S2. Overview of individual specificity of rs-FC across parcellation

granularities. Results are shown for rs-FC generated from Minimal (a & c) and

ICA-FIX (b & d) data configuration.
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Figure S3. Overview of predictability based on rs-FC denoised voxel-wise or

region-wise in both data quality configurations. Pearson's r between the predicted

and observed values of each target, generated over 5-fold x 5-repeats in each of

the three parcellation granularities are shown. Rs-FC was averaged across both

runs (LR and RL) and both sessions (R1 and R2) per subject.
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